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A simple and computationally efficient way of finding inverse avalanches for Abelian sandpiles,
called the inverse particle addition operator, is presented. In addition, the method is shown to be
optimal in the sense that it requires the minimum amount of computation among methods of the
same kind. The method is also conceptually succinct because avalanche and inverse avalanche are

placed in the same footing.
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The Abelian sandpile model (ASM), whose mathemat-
ical structure is first studied extensively by Dhar [1], is
one of the few classes of models of self-organized critical-
ity in which alot of interesting physical properties can be
found analytically. The model consists of a finite number
of sites labeled by an index set I. For each site ¢ € I,
we assign an integer h;, called the local height, to it.
Whenever the local height of a site exceeds a threshold
(which is fixed to 0 for simplicity), the site is called un-
stable and will transport some of its local heights (or
sometimes called particles at that site) to the other sites
in the next time step by

hj — hj - A,‘j, whenever h,‘ > 0. (1)

A is called the toppling matrix whose elements satisfies

Ay >0, Viel, (2a.)
and
ZA,, >0, Viel. (2¢)
jeI

Toppling is repeated until all sites become stable again.
The whole process of toppling is collectively known as an
avalanche. The system is driven by adding a unit amount
of particles onto the sites randomly and uniformly after
the system regains its stability.

A system configuration, stable or not, can be regarded
as a point in the space ZV where N is the total number
of sites in the system. Both the addition of a particle and
the toppling of particles in a site can be regarded as a
translation in ZV [1-3]. The process of adding a particle
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to the site i together with the subsequent toppling it
triggers (if any) can be viewed as a map between the set
of all stable system configurations, and is denoted by a;
[1,4].

Based on the observation that the final stable state is
independent of the order of toppling in different sites,
Dhar shows that a; o aj(a) = a; o a;(a) for any stable
system configuration « [1]. This is why we call the model
“Abelian.” Using this commutative property, the total
number of recurrence states in the model is shown to be
det A [1], and we denote the set of all recurrence states
by Q.

Generalization of the ASM, known as the generalized
Abelian sandpile model (GASM), has been made re-
cently by Chau and Cheng [2]. In their model, the local
heights h; and the elements in the toppling matrix A are
real numbers instead of integers. Also, A satisfies only
Egs. (2a) and (2b). An arbitrary amount of particles are
allowed to add to the system in possibly different loca-
tions all at the same time. Moreover, some special kind
of configuration dependent triggering thresholds are used
to determine the local stability of the pile (see Ref. 2]
for details). In spite of the large differences between the
ASM and the GASM, similar commutative properties be-
tween particle addition operators are found for recurrence
system configurations.

In both the ASM and the GASM, one can prove that
for any pair of @ € Q and a;, there exists a unique system
configuration 8 € 2 such that a;(3) = a [1,4]. While the
avalanche problem (i.e., the problem of finding o given 8
and a;) is straightforward and can be done very quickly in
computer; the inverse avalanche problem (i.e., the prob-
lem of finding 3 given « and a;) is much more difficult.
(B cannot be found, in general, by simply removing parti-
cle(s) from site(s) because the particle removal operation
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can map a state out of the eventual phase space 2. Fur-
thermore, the relationship a; ! = a**2~! does not work
very well for two reasons. First, det A is, in general, a
huge number making the method computationally im-
practical. Second, in the event of the GASM, det A may
not be an integer and hence ad®*2 is not well defined.

The first computationally feasible method of finding in-
verse avalanches is proposed recently by Dhar and Manna
using the so-called inverse avalanche operator by means
of the burning algorithm [5]. However, the method works
only on the ASM with a symmetric toppling matrix. In
this paper, we introduce a simple method to tackle the
inverse avalanche problem for both the ASM and the
GASM. To each particle addition operator, we find a
succinct and simple way to associate its inverse to an-
other particle addition operator, called the inverse parti-
cle addition operator. Then we prove that the method is
computationally optimal in the sense that it requires the
least number of topplings among all the possible methods
using the idea of inverse particle addition operators.

For simplicity, we concentrate only on the case of
Abelian sandpiles in the discussions below. However, all
arguments, after slight modifications, work equally well
on the GASM. We represent a system configuration «,
stable or not, by a row vector of length N. In particular,
the marginally stable state of the system (i.e., the one
to which an avalanche is triggered whenever particles are
added to any one of the sites) is 0 = (0,0,...,0).

Given a particle addition operator a, we consider

T= ('Yj)jej = 3(6) = (aj — EknkAk.‘i)jeI €Q, (3

where a; > 0 is the number of particles added to site ¢,
and n; € N for all i € I is the total number of toppling
in site ¢ triggered after the particles are added [3]. For
example, a; = §;; for the operation of adding a single
particle to site ¢ together with the subsequent toppling
induced a;. The above definition works equally well when
more than one particle is introduced to the system each
time, and when they are introduced to different sites.
Consider the operation of adding —+; particles to site
t for all 7 € I together with the subsequent toppling in-
duced (if any). We denote this operation by a. This
is a well-defined operation sending system configura-

tions from Q to 2 because v; < 0 for all 7. For any
a = (a;);er €9,
a(a) = (aj — aj + 4nk'Akj)jp € R (4)
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for some ni' € Z. Moreover,
aoca(a) = (aj + ank”AkJ’)jeI €N (5)

for some ng" € Z. But by the remark between corollary 1
and corollary 2 in Ref. [2], we conclude that n;” = 0 for
all k € I and hence ac a(a) = a for all a € Q. Since the
particle addition operators commute with each other, we
can also conclude that Aca(a) = a. Asaresult,a=a"1
is the inverse particle addition operator corresponding to
the particle addition operator a.

We proceed to show that the above way of finding in-
verse avalanches is computationally optimal in the sense
that the total number of toppling involved in the calcula-
tion is minimum among all the inverse particle addition
operators (such as adet4-1),

Suppose b’ is another inverse particle addition oper-
ator corresponding to the particle addition operator a
consisting of adding b;(> 0) particles to site i for all
t € I together with the subsequent toppling. Clearly,
bj = >, mrAgj —a; > 0 for some my € N [2]. Con-
sider the addition of b; particles into site ¢’ for all 7 at
the same time to the system configuration . The resul-
tant configuration is u = [}, (mk — nk) Akjl;c;- Since
b'(y) = a~!(y) = 0, s must either equal to 0 or it is an
unstable configuration which will eventually topple to 0.
In either case, we can conclude that m; — n; > 0 for all
i € I and the equality holds if and only if b; = —~; for
allz € I.

For any a € , the introduction of b; particles to site 7
for all ¢ is equivalent to the addition of first —+; particles
to site ¢ for all ¢ and then ), (mi — ni)Ag: particles
into site ¢ for all i. So as compared to a, b’ requires
> ;(m; —n;) more toppling to find the inverse avalanche.
Thus a is computationally optimal.

In summary, we have introduced a simple and efficient
way to find the inverse avalanche for both the Abelian
sandpile and the generalized Abelian sandpile by means
of inverse particle addition operator. The method is con-
ceptually succinct because inverse particle addition op-
erators are placed in the same footing as the particle
addition operators.
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